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INTRODUCTION 

While modern understanding of genetic inheritance initiated with the 

theories of Charles Darwin, it was the Augustinian monk George Mendel 
who began to uncover the mathematical nature of the subject. In fact, the 

symbolism Mendel used to describe his first result (e.g., see his 1866 paper 

Experiments in Plant-Hybridization (Mendel, (1959)) is quite algebraically 

suggestive. Seventy four years later, Etherington introduced the formal 
language of abstract algebra to the study of genetics in his series of seminal 

papers (Etherington, (1939)), Etherington, (1941)) and Etherington, (1941)). 

In 1997  by Mary Lynn Reed explored the non-associative algebraic 
structure that naturally occurs as genetic  information gets passed down 

through the generations and was discussed the concepts of genetics that 

suggest the underlying algebraic structure of inheritance (Reed, (1997)). 
 

So called genetic (evolutionary) algebras naturally appear in the 

problems of the population genetics. Mathematically, the algebras that arise 
in genetics are very interesting structures. They are generally commutative 

but non-associative. Therefore, one has to deal with problems of the 

classification such algebras. The notions of a quadratic stochastic operator, 
the vertices of simplex, the fixed points of Volterrian quadratic stochastic 

operators, the tournaments and some properties were sufficiently studied by 

Ganikhodjaev (Ganikhodjaev, (1993)). Moreover, Volterrian quadratic 
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stochastic operators on infinite dimensional simplex were studied by 

Mukhamedov.  
 

In this paper genetic algebras, generated by the quadratic stochastic 
operator were studied and some properties of tournaments and their algebras 

in small dimensions were discussed. 

 

 

BASIC CONCEPTS AND NOTATIONS 

In this section we will give definitions of some necessary algebras, 
Volterrian quadratic stochastic operator and biological meaning of these 

notions. 

 

Let A  be algebra over the real field R . We consider a finite 
dimensional commutative, but generally, non-associative algebra over the 

field R .The following expression is called an associator:  

 

( , , ) ( ) ( )x y z x y z x y z= −� � � � . 

 

Depending on the additional identities put on the associator we obtain 
various classes of nonassociative algebras. The most important algebras 

among them are (Abraham, (1980), Bernstein, (1924) and Kesten, (1970)): 

 

  1) Jordan algebras: [( ) ] ( ) ( )x x y x x x y x=� � � � � � ,                                                         

     2) Elastic algebras: ( ) ( )x y x x y x=� � � � , 

     3) Alternative algebras: 

       ( , , ) ( , , ) 0x x y y x x= = ⇔  )a ( ) ( )x x y x x y=� � � � , 

                                            )b ( ) ( )y x x y x x=� � � � . 

Denote by  

1
1 2

1

( , ,..., ) : 1, 0
n

n n
n k k

k

S x x x x R x x
−

=

 
= = ∈ = ≥ 
 

∑  

( 1)n − -dimensional simplex.  

 

Let , , 1,
{ }ij k i j n

p
=

  be the set of a nonnegative numbers satisfying the 

following conditions: 

, ,ij k ji kp p=  и  ,

1

1
n

ij k

k

p
=

=∑ . 
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In biology ,{ }ij kp  are called coefficients of heredity, and the 

transition from the distribution of specie’s probability in this generation to 

the distribution of specie’s probability in the next generations is determined 
by  
 

'
,

, 1

,
n

k ij k i j

i j

x p x x
=

=∑                                                                    (1) 

where ( ) 1
1 2, ,..., n

nx x x x S −= ∈ . 

 

The last equality determines a mapping 1 1: n nV S S− −→ , and this 

mapping is called a quadratic stochastic operator (q.s.o.).  

 

Notion of q.s.o. is used in the works of Bernstein, (1924) on 
problems of mathematical genetics.  

 

In mathematical genetics V  is called an evolutionary operator of 

population. The population is determined as a closed community of 

organisms concerning the process of reproduction. In the population 

successive generations 1 2, ,...F F   are distinguished. Suppose that between 

kinds of different generations never happens an interbreed. Every individual, 

which contains in population, belongs to certain (single) from  n  varieties 

(“indications”, kinds):1,2,...,n . Composition of population is the set of 

elements 1
1( ,..., ) n

nx x x S −= ∈  probability of varieties (Bernstein, (1924) and 

Lyubich, (1992)).  
 

We extend V  from simplex  1nS −  to all space 
n

R  by (1), i.e. : n nV R R→ .                   

 

 A multiplication on 
n

R  is determined by 

( )
1

( ) ( )
4

x y V x y V x y= + − −� .                                                                    (2) 

Obtained algebra ( , )nR �  is called a genetic algebra. 

 

For any genetic algebra








== ∑
=

−
n

i

i

n
xxH

1

1
1: , 

1−nS   and 

1

1

: 0
n

n
i

i

L x x
−

=

 
= = 
 
∑  are invariants regarding to introduced operation of 

multiplication (2). Moreover 1nL −  is an ideal of this algebra. 
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Indeed, we shall prove that, let 
1n

H
−

 is an invariant. For all  1, nx y H −∈  we 

have  

( ) ( )( ) ( ) ( )( )' '

, ,

, 1 , 1

, .
n n

ij k i i j j ij k i i j jk k
i j i j

x y p x y x y x y p x y x y
= =

+ = + + − = − −∑ ∑  

 
Consequently, 

( ) ( )( ) ( )( ), ,

, 1 , 1

1

4

n n

ij k i i j j ij k i i j jk
i j i j

x y p x y x y p x y x y
= =

 
= + + − − − 

 
 
∑ ∑�

( ) ( ), ,

, 1 , 1

1 1
2 2

4 2

n n

ij k i j j i ij k i j j i

i j i j

p x y x y p x y x y
= =

= + = +∑ ∑ .  

 
Now calculate the sum of coordinate, i.e.: 

( ) ( ) ( ), ,

1 1 , 1 , 1 1

1 1

2 2

n n n n n

ij k i j j i ij k i j j ik
k k i j i j k

x y p x y x y p x y x y
= = = = =

   
= + = +       

∑ ∑ ∑ ∑ ∑�  

 

( ) ( ) ( ),

, 1 1 , 1 1 1

1 1 1

2 2 2

n n n n n

ij k i j j i i j j i i j j i

i j k i j i j

p x y x y x y x y x y x y
= = = = =

  
= + = + = +       
∑ ∑ ∑ ∑ ∑

 

( )
1 1 1 1

1 1
1

2 2

n n n n

i j j i i i

i j j i

x y x y x y
= = = =

 
= + = + = 

 
 

∑ ∑ ∑ ∑ . 

 

Thus 1nx y H −∈�  for any 1, nx y H −∈ . 

 
Definition 2.1 (Ganikhodjaev, (1993)). The quadratic stochastic operator 

1 1: n nV S S− −→  is called a Volterrian operator, if   

 

, 0ij kp = , at { , }k i j∉ .                                                                (3)                         

       

If  1 1: n nV S S− −→  a Volterrian operator, then we may rewrite V  as: 

 

'

1

1 , 1,
n

k k ki i

i

x x a x k n
=

 
= + = 

 
∑                                                                      (4)         
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where ,2 1ki ik ka p= −  at  i k≠  and , 1ki ik kia a a= − ≤ , i.e. , 1( )
n

n ki k iA a ==  is a 

skew-symmetrical matrix. 

 

The biological treatment of condition (3) is clear: The offspring repeats the 
genotype of one of its parents.  
 

 

Consider operator : n nV R R→  defined by  

 

'

1 1

, 1,
n n

k k i ki i

i i

x x x a x k n
= =

 
= + = 

 
∑ ∑                               (5)  

 

Definition 2.2  A linear continuous functional ϕ  on the genetic algebra 

( , )nR �  is called a multiplicative, if  for all x  and y   

( ) ( ) ( )x y x yϕ ϕ ϕ= ⋅� (Etherington, (1941)). 

 

 

MAIN RESULTS 

In this section we study a one-dimensional subalgebras of genetic 

algebras and properties of tournaments and their algebras. 

Theorem 3.1 On the genetic algebra  ( , )nR �  a functional 
1

( )
n

i

i

x xϕ
=

=∑  is a 

multiplicative linear functional.   

Proof.  Consider a functional
1

( )
n

i

i

x xϕ
=

=∑ . By definition 2.2 follows that ϕ  

is a multiplicative linear functional if ( ) ( ) ( )x y x yϕ ϕ ϕ= ⋅� .  

 

( )( ) ( )( ), ,

, 1 , 1

1

4

n n

ij k i i j j ij k i i j j

i j i j

x y p x y x y p x y x y
= =

 
= + + − − − 

 
 
∑ ∑�      

( ),

, 1

1
2 2

4

n

ij k i j j i

i j

p x y x y
=

= +∑  and ,

1 , 1

( )
n n

ij k i j

k i j

Vx p x xϕ
= =

 
=  

 
 

∑ ∑ . 
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Since the sum is finite then  

( ) ( ), ,

1 , 1 , 1 1

1 1
( ) 2 2 2 2

4 4

n n n n

ij k i j j i ij k i j j i

k i j i j k

x y p x y x y p x y x yϕ
= = = =

   
= + = +       
∑ ∑ ∑ ∑�       

                        

( ) ( )
, 1 1 1 1 1

1 1 1
2 2 ( ) ( )

4 2 2

n n n n n

i j j i i j j i j j

i j j i i j

x y x y x y x y y x x yϕ ϕ
= = = = =

 
= + = + = + 

 
∑ ∑ ∑ ∑ ∑  

 

( )
1 1

1 1
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

2 2

n n

j j

j j

y x x y x y y x x yϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ
= =

 
= + = + = 

 
 
∑ ∑ . ■ 

 

Theorem 3.2 Any one-dimensional subalgebra on ( , )nR � contains a unique 

nonzero fixed point of the operator V . Conversely, if 0 00 x Vx≠ =  is a 

nonzero fixed point then 0{ } RL x λλ ∈=   is one-dimensional subalgebra on 

( , )nR � .  
 

Proof.  Let  0{ } RL x λλ ∈=   be one-dimensional subalgebra on ( , )nR �  and 

00 x L≠ ∈ .  Then ( )2
0 0 0 0 0 0 0 0

1
( ) ( )

4
Vx x x x V x x V x x L= = = + − − ∈� . From 

here 0 0 0Vx xλ= .  Let  x L∈  , i.e., 0x xµ=  and 0 0V x xµ µ= . On the other 

hand 2 2
0 0 0 0V x Vx xµ µ µ λ= = . Therefore 2

0 0 0x xµ λ µ= ⇒ 2
0 , 0µ λ µ µ= ≠ . 

Hence, for 
0

1
µ

λ
=   we have the  unique fixed point.  

 

Conversely, let   0 00 x Vx≠ =  be a fixed point on the concerning operator V . 

Then for all ,x y L∈   we have 2 2
0 0 0( )Vx V x Vx xλ λ λ= = =  and  

2 2
0 0 0( )Vy V x Vx xµ µ µ= = = .  

 

Consequently, x y L∈� , i.e.  

( ) ( ) ( )2 2

0 0 0 0

1 1 1
( ) ( ) ( ) ( ) ( ) ( )

4 4 4
x y V x y V x y V x V x x xλ µ λ µ λ µ λ µ= + − − = + − − = + − −�

( )2 2
0 0 0

1
( ) ( )

4
x x x Lλ µ λ µ λµ η= + − − = = ∈ .  

 

Hence, 0{ } RL x λλ ∈=  is one-dimensional subalgebra on ( , )nR � .  
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A mapping :f X Y→  is called a homomorphism from algebra X  intoY , if 

it satisfies the following conditions:  
 

( ) ( ) ( )f x y f x f y+ = + ,                 ( )i  

( ) ( )f x f xα α= ,                             ( )ii  

( ) ( ) ( )f xy f x f y=                          ( )iii  

 

for all ,x y X∈  and Rα ∈ . 

 

A homomorphism f  of algebra X   into algebra Y  is called an 

isomorphism of  X  onto Y  if  f  is one-to-one and ontoY , satisfying the 

conditions ( )i - ( )iii . 

 

Let 0x  is a fixed point of V .  
 

Corollary 3.3  Let 0x  is a fixed point of .V  Any one-dimensional 

subalgebra 0{ } RL x λλ ∈=  in algebra ( , )nR �  is isomorphic onto R  with the 

simple multiplication.  
 

We discuss a classification of Volterrian genetic algebras. Suppose, 0kia ≠  

at k i≠ . Alongside the dynamical system (4) we consider a full graph nG  

consisting of n  vertices: 1,2,..., n .  
 

Define a tournament nT , as a graph consisting of n  vertices labeled 

by 1,2,..., n , corresponding to a skew-symmetrical matrix mA  by the 

following rule: there is an arrow from i  to k  if 0kia < , a reverse arrow 

otherwise. Note that if signs of two skew-symmetric matrices are the same, 

then the corresponding tournaments are the same as well. 

 
Recall that a tournament is said to be strong if it is possible to go from any 

vertex to any other vertex with directions taken into account. A strong 

component  of a tournament is a maximal strong subtournament of the 

tournament. The tournament with the strong components of   nT  as vertices 

and with the edge directions induced from nT  is called the factor tournament 

of the tournament nT  and denoted by  nTɶ . Transitivity of the tournament 

means that there is no strong subtournament consisting of three vertices of 
the given tournament. A tournament containing fewer than three vertices is 

regarded as transitive by definition. As is known (Harrary, (1969)), the 
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factor tournament  nTɶ  of any tournament nT  is transitive. Further, after a 

suitable renumbering of the vertices of  nT  we can assume that 

subtournament  rT  contains the vertices of  nT  as its vertices, 

i.e.,{ } { } { }1 , 2 ,..., .r Obviously, r n≥ ,and r n=  if and only if nT  is a strong 

tournament. 

 

Let us describe the tournaments for small n . As an example in Figure 1 

tournaments with two, three and four vertices are shown. 

 

1)  2T :                                              

 

 

2)  3T :   

 

 
 

 

 

3)  4T :   

 
Figure 1 

 

A tournament  3T  in case а) is called a transitive triple, in case b) called a 

cyclic triple. From Figure 1, one can easily see, that 3T  in case b) and 4T  in 

case d) is a strong tournament, and the others are non-strong tournaments. 

  

Consider an operator : n nV R R→  defined by (5). In case 3n =  this 

dynamical system    takes the following form:  
3 3

'

1 1

, 1,3k k i ki i

i i

x x x a x k
= =

 
= + = 

 
∑ ∑              (6) 

where ,2 1ki ik ka p= −  at  i k≠  and , 1ki ik kia a a= − ≤ . 
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In particular case of  3T  we have the following dynamical systems: 

 
3

'
1 1 2 3

1

3
'

1 2 2 1 3

1

3
'
3 3 1 2

1

:

i

i

i

i

i

i

x x x x x

V x x x x x

x x x x x

=

=

=

  
= − −  

 


 
= + −  

 
   = + +   

∑

∑

∑

  and 

3
'
1 1 2 3

1

3
'

2 2 2 1 3

1

3
'
3 3 1 2

1

:

.

i

i

i

i

i

i

x x x x x

V x x x x x

x x x x x

=

=

=

  
= − +  

 


 
= + −  

 
   = − +   

∑

∑

∑

     (7) 

 
Hence,   
 

' 2
1 1

'
1 2 2 1 2

'
3 3 1 2 3

: (2 )

(2 2 )

x x

V x x x x

x x x x x

 =


= +


= + +

 and  

'
1 1 1 3

'
2 2 2 1 2

'
3 3 2 3

( 2 )

: (2 )

(2 ).

x x x x

V x x x x

x x x x

 = +


= +


= +

           

 

Now we consider the algebras, generated by the Volterrian operator, 

where operation of multiplication is defined by (2). The corresponding 

algebras are 3
1 1( , )A R= �  and 3

2 2( , )A R= � ,  
 

where 

( )1 1 1 1 2 2 1 2 2 1 3 3 1 2 3 3 2 3 3, ,x y x y x y x y x y x y x y x y x y x y= + + + + + +� , 

( )2 1 1 1 3 3 1 2 2 1 2 2 1 3 3 2 3 3 2, ,x y x y x y x y x y x y x y x y x y x y= + + + + + +� . 

 

It is easy to check the following properties of the algebras:  
 

1) The algebras are commutative. 

2) The algebra 1A  is associative.  

3) The algebra 2A  is non-associative, non-Jordan and non-alternative. 
 

Here we shall prove 2): Let 1, ,x y z A∈ . Then, 
  

( )1 1 1 1 2 2 1 2 2 1 3 3 1 2 3 3 2 3 3, , ,t z t z t z t z t z t z t z t z t z t z= + + + + + +�  

( )1 1 1 1 2 2 1 2 2 1 3 3 1 2 3 3 2 3 3, , ,x l x l x l x l x l x l x l x l x l x l= + + + + + +�  
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where  1t x y= �  and 1l y z= � . Hence, ( ) ( )1 1 1 1x y z x y z=� � � � , i.e. the 

algebra 1A  is an associative . 
 

Now in general case, we consider the algebras 3
1 1( , )B R= �  and 

3
2 2( , )B R= �  with     

3 3
'

1

1 1

( ) , 1,3k k i ki i

i i

V x x x a x k
= =

 
= + = 

 
∑ ∑  

3 3
''

2

1 1

( ) , 1,3k k i ki i

i i

V x x x a x k
= =

 
= + = 

 
∑ ∑            (8)     

 

where  
' '

,2 1ki ik ka p= −  at  i k≠  and 
' ' '

, 1ki ik kia a a= − ≤ , 
'' ''

,2 1ki ik ka p= −  at  

i k≠  and 
'' '' ''

, 1ki ik kia a a= − ≤ . Since the operator 1V   of  (8) corresponding to 

the tournament 3T  ( )a  have 3 fixed points and the operator 2V  of  (8) 

corresponding to 3T  ( )b  have 4 fixed points, the corresponding algebras are 

non-isomorphic.   

 

In general case the following theorem holds: 

 

Theorem 3.4  If the numbers of cyclic triples of two tournaments are 

different, then corresponding algebras are non-isomorphic. 
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